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Abstract. Formulae are obtained for calculating the effective Hall coefficient in a weak 
magnetic field and for the effective Seebeck coefficient neglecting the secondary thermo- 
current. A model of an infinite cluster on both sides of the percolation threshold with 'hot' 
and 'active' points is constructed. It is shown that the main contribution to the kinetic 
coefficient in the critical interval is given by a few separate small regions called 'active' or 
'hot'points. For a given change of concentration in the crilical interval. the number of these 
points correspondingly changes; near the percolation threshold there remains one active 
point in the volume p a ,  where p is the correlation radius. 

1. Introduction 

This paper is a sequel to and a further development of Skal(l981) and Skal and Andreev 
(1982a, b). In this paper we try to answer the question of what information on the 
topology of a disordered system can be inferred from an experiment involving measure- 
ments of conductivity and Hall and Seebeck coefficients in a two-component random 
mixture. It seemsreasonable toapply the percolationmethod to investigate thisproblem. 
The percolation problem is mainly of interest as a simple example of a second-order 
phase transition with associated critical phenomena. 

The Hall effect and thermopower have been used intensively to investigate the 
metal-insulator and metal-superconductor transitions in a variety of disordered systems 
(see the pioneering theoretical work of Juretschke ef a1 (1956) and Odolevskii (1951)). 
An effective-medium theory (EMT) and a simulation approach have been used to discuss 
the properties of the Hall effect and thermopower in conductors with macroscopic 
disorder (Straley 1980a, b, Orton and Powell 1980, Skal 1981, Skal and Andreev 
1982a, b, Ottavi ef al1978). Reported in the literature are attempts at 'frontal attacks' 
on the solution of the complete conductivity tensor problem (Webman et al 1977). 
However, the results obtained cannot be considered as satisfactory because of poor 
convergence of the computation procedure near the percolation threshold. 

In the present paper we solved a more particular problem, where the Hall coefficient 
is calculated, provided that variations in the current distributions occurring under the 
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action of the masnetic field are completely neglected. Analogously, one ean treat 
thermoelectric phenomena by neglecting variations in the temperature distribution 
which occur undei the actions of thennoelectromotive Force. Also a new model infinite 
cluster on both sides of the percolation threshold is introduced. 

2. Calculation of the Hall effect in a disordered system 

Consider a disordered system whose discontinuity scale is larger than the free path of 
charge carriers and whose free path is larger than the cyclotron radius. These conditions 
allow the introduction of local conductivity u(r)  and Hall coefficient R(r) .  The equation 
for the electric current in such a system can be written as 

where H is magnetic field and - q ( r )  is the electric potential. This equation is not valid 
for a very weak magnetic field, because cyclotron radius R, - 1/H and at low H it 
becomes larger than the free path and discontinuity length. 

ConsideracubicsamplewithsidelengthsL,,,L,,,L,, ( x = x , , y = ~ ~ , z = ~ ~ ) w i t h  
an applied electric field intensity E along the x ,  axis. Denote by - q,(r)  the electrical 
potential caused by the electric field applied alongx,. In a weak magnetic field Hone 
can express the current as 
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j ( r )  - o(r)Vpl(r) + o(r)R(r)[H X j W l  (1) 

i X r )  = ~ r ) V n q m ( r )  + d ( r ) R ( r ) [ H  X V q m ( r ) l n .  (2) 
The boundary conditions for the potential q&) are q m ( r )  l r E r  = Ex, where r is the 

With those conditions, if an electric field is applied along 'x' and Hall voltage is 
boundary surface of the sample, j : (r)  is the projection ofjm(r) on the x, axis. 

measured along 'y' the effective Hall coefficient can be expressed as 

Re"@) = I j ; ( r )  dV/[o:"@)u;"(p)EH~ (3) 
V 

where Vis the volume of the sample and o:"(p), aF"(p) is the effective conductivity 
along axis 'x ' ,  'y'. 

Expanding the solution as a series up to the quadratic field term yields 
j ( r )  = j o ( r )  + j , ( r )  + O(P) ( 4 4  
vm(4 = qo.,(r) + v d )  + Wf7. (46) 

j 6 , A r )  = 4 r ) V P z ~ o . m ( r )  ( 5 4  
jT,,(r) = u ( V , , ~ d r )  + 0 2 ( r ) W W  x v q 0 . ~ 1 ~  (56) 

qo,m(r)I,EI. = f im i.,(r) lrEr = 0. ( 6 )  

(7) 

Equation (2) can now be written as 

with the boundary conditions 

To find the solution of equations (5 )  we introduce the Green function G(r ,  r') such that 

V,[u(r)C,G(r ,  r ' ) ]  = S3(r  - r') 

G(r ,  r ' )  = G(r', r )  

V , [ o ( r ) ~ , v o . , . ( r ) I  = 0 (8) 

V ,  [ o ( r ) v ,  ~ 6 ,  W l =  - V , , [ ~ ( d V n ( E ~ , ) 1  (9) 

G(r, r ' )  l r E r  = 0. 
Since Vnj;, ,(r)  = 0, then 

or it can be rewritten as 
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where 

v L ( r )  = vo .m(r )  - Ex,  p6,m(r)lrer = 0. 

Hence V,(Ex,) = Ea:, 

PO&" = Ex, + q&,(r)  = Exm - G(r, r')VA[u(r')V;(Ex;)] dV' 

= Ex, + E u(r')V;G(r,  r') dV' 1, 
and 

j;,m(r) = u(r)Vnpo,m(r)  = Eu(r)G; + E u(r')u(r)V,,VkG(r, r ' )  dV'. (11) I ,  
Using the Green function one may calculate this integral. This is of primary importance 
both for the Hall effect and for the thennopower. For further applications the integral 
may be expressed in another form: 

u(r)u(r')V,VhG(r.  r ' )  dV = E-lj;.m(r) - u(r)G:. (12) 1, 
Using the Green function one can now find a solution for pl ,m(r) .  Because Vj,.,(r) = 0, 

Vn [ ~ ( r ) V n  v 1.m (r)l = -Vn [u'(r)R(r)lIH x v Q 7 0 . m  (rlln (13) 

qI , , , ( r )  = 1 VAG(r, r')u2(r')R(r')[H X Vrpo.,(r')ln dV'. (14) 
V 

Now we are prepared to calculate the Hall effect to first order in the magnetic field. 
According to (3) we must determine 

ii;(r) d v =  l v j j . x (r )  Jv o ( r ) v , ~ o . ~ ~  dv. (15) I ,  
The second component on the right-hand side of equation (15) equals zero, owing to 
the boundary condition p0,*(r) l r E r  = Ex (or simply because it is independent of the 
magnetic field). Thus we have to calculate 

Using the result for p I , J r )  from (14) one can obtain 

[E-'ji;,y(r') - u(r')G;]u(r')R(r')[H x Vrpo.x(r')]n dV' 
= I ,  
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Thc last integral is the same as the second component on the right-hand side of (16) and 
is cancelled. Thus for the average Hall current, there is a very simple expression: 

j ; . , ( r ) d V =  E' R(r)jk,(r)[H X j d r ) l n  dV. (18) I, I, 
Now the effective Hall coefficient from equation (3) becomes 

3. Calculation of the Seebeck coefficient in a disordered system 

With the Green function technique used in the previous section one can easily obtain an 
analogous formula for the Seebeck coefficient. Assuming that the medium can be 
described by local thermoconductivity ~ ( r ) ,  temperature T(r)  and Seebeck coefficient 
a ( r )  it is possible to write equations for the electric j(r)  and thermal flux u(r)  as follows: 

= W v k d r )  - o(+-yo)v, T ( r )  (204 

u k ( r )  = -K(r)CkT(r)  + a(r)u(r )T(r )Okp(r) .  

Suppose that opposite edges of the sample are electrically connected and the thermo- 
electric current is measured. The temperature of the edges is kept at T ,  and T2, The 
boundary conditions for q ( r )  and T(r) are 

= 0 T(r)Irer = (T2 - TI)X,/L,,. (21) 

Now assuming a ( r )  is small, i.e. second term in equation (206) is much less than the first 
and can be neglected, system (20) can be written as 

v k [ u ( r F k v w l  = vA[o(r)n.(r)rk Wl 

v , [ K ( r ) v k T ( r ) ]  = 0. (22b) 

Equation (226) for the temperature distribution is similar to that for the electric current 
with conductivity K ( r ) .  On a lattice it can be solved by iterations of the Kirchhoff 
equation. 
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From (22a) and using the Green function, it is easy to obtain 

q ( r )  = lV C(r,  r‘)V;[u(r’)a(r’)ViT(r‘)] dV’ 

= -I, [V;G(r,  r‘)]u(r’)a(r’)Vk T(r’)  dV‘. 

(i,W = 1“ o ( r ) r , q ( r )  dV - 1 o(r)cu(r)v,T(r) dV. 

(23) 

The effective Seebeck coefficient is proportional to the mean thermocurrent: 

(24) 
V 

Substituting p ( r )  from (23) and using (12) the first term in (24) becomes 

lv o(r)V,q(r)  dV = -jv a(r’)V;T(r’)  1, u(r’)u(r)V,ViG(r, r’) dV 

= E - ’  j;.,(r)a(r)VkT(r) dV + o(r)a(r)V, T(r) dV. (25) 1“ I, 
The second term in (25) is cancelled by the second term in (24) so for the effective 
Seebeck coefficient a simple expression is obtained: 

In the case of a two-component medium the volume integral can be transformed into: 

where S is the surface between the two phases, and n is normal to S. 

4. Model of an infinite cluster 

We are considering a two-component system with ‘high’ conducting component ‘1’ 
and ‘low’ conducting component ‘2’. At p < pc one considers a metal-superconductor 
transition, in which case component ‘1’ is superconductor and component ‘2’ is metal. 
A t p  > p c  component ‘1’ is metal and component ‘2’ is insulator. To define the ‘special’ 
points for the Hall and Seebeck coefficients and for the Joule heat we introduce 

w‘“(p) = j ’ (r) /u(r)  dV. I, 
One can assign to each bond the value for the integrand expressions (19), (26) and 

(28). This can be done after solving the system of Kirchlroff equations and calculating 
the current density on each bond. In the case of Joule hest the physical meaning of the 
integrand expression is the Joule heat density; for the Hall and Seebeck coefficients 
there is no direct physical meaning for the integrand expression. 
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The distribution function of those integrand expressions on volume for all bonds can 
be found. It turns out that one can divide all volumes into three classes. For the purpose 
of this classification one has to introduce a cutting parameter E ,  0 =z E S 1. Taking 
E = 0.985 we investigate the question: what part of the volume gives off €wCff(p) of the 
Joule heat. 

It is necessary to make the distribution of all bonds in order of their decreasing Joule 
heat and begin to summarize this row from the ‘hottest’ point. We put into the first 
(small)class‘l’all‘hottest’bonds that togethergiveavalueofJoule heat equal toexactly 
E W ’ “ ( ~ ) .  The remaining bonds are divided into two further classes. 

The second class ‘2’ is the largest part of the volume, but gives off very little of the 
Joule heat: (1 - e)w“(p) .  

The relatively small third class ‘3’ does not give any Joule heat-these bonds are 
called ‘dead ends’. This class exists only forp > p- 

This classification allows us to build a single model of the phase transition on both 
sides of the percolation threshold: p = p E  - Ap (metal-superconductor), p = pc + Ap 
(metal-insulator). 

It is known that the order parameter forp > p c ,  P ( p ) ,  is the relative volume of the 
infinite cluster and many papers have been devoted to its topological structure (Stauffer 
1979, Stanley and Coniglio 1983, Kapitulnik and Deutcher 1984). Our calculationsshow 
that, for each kinetic coefficient, different geometrical properties are important and it  
is impossible to develop a single universal model for all the kineticcoefficients. 

Even the ‘dead ends’ for the Hall effect (the volume for which the value of the 
integrand expression (19) is equal to zero) do not coincide with the ‘dead ends’ for 
conductivity, because the dead ends for the longitudinal conductivity o:“(p) may carry 
current for the transverse conductivity o’,”(p). 

Each kinetic coefficient has its own ‘special points’ that make up its specific model 
of an infinite cluster. Let us begin with constructing the infinite cluster model for 
conductivity. 

For an increasing concentration in the critical interval, we investigate the dynamics 
of the phase transition for conductivity. What is changing in the critical interval when 
we add Ap of the component ‘1’ bonds? Below the percolation threshold at p = pc - Ap 
thcre are large finite clusters from component ‘1’ that are placed in class ‘2’ and there 
are thin leads of component ‘2’ between them. It turns out that those leads are ‘hot 
points’ (class ‘1’). This classification allows us to introduce a new determination of a 
conducting infinite cluster which consists of two components and carry the current. To 
change the concentration we add component ‘1’ bonds; if this bond is placed on a ‘hot 
point’ it becomes ‘cold‘ and the quantity of ‘hot points’ decreases as the percolation 
threshold approaches. Very surprisingly, it turns out that a two-component infinite 
cluster decreases to zero owing to changing current flow. The number of ‘hot points’ 
decreases; near threshold there remains one, consisting of component ‘2’ in the volume 
p’(p), where p(p) is the correlation radius, which diverges towards the percolation 
threshold. 

With further increasing of concentration at p > pc  the ‘hot points’ consist of com- 
ponent ‘1’ and their quantity increases. But each of them becomes colder and colder; 
the distribution of beating changes as well as current flow. So only investigation of the 
Joule heat distribution allows one to obtain an exact solution of the problem of infinite 
cluster topology. In our model one can imagine an ‘infinite cluster’ as a superlattice 
consisting of big finite clusters of ‘ideal metal’ that are almost unchanged in the critical 
interval. All changes occur at the ‘hot points’ which connect large clusters like bridges. 
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It is possible to build similar distribution functions for the Hall effect and for ther- 
mopower, using instead Joule heat integrand expressions (19) and (26). After that the 
same classification for the volume is made and points with a high value for the integrand 
expression are called ‘active points’. The ‘active points’ for the Hall effect turn out not 
to be in the same place as ‘hot points’ because the places where the current density 
jo.x(r) is high are not the same as where j0.Jr) is high and we are interested in their 
multiplication. But calculation shows that the dynamics of Hall ‘active points’ is the 
same as that of ‘hot points’. On both sides of the transition their quantity decreases as 
the percolation threshold approaches, and at pc there remains only one ‘active point’. 

For thermopower, the existence of ‘active points’ depends on the relation of the 
thermoconductivities. If K,(r)/K2(r) + p then the existence of ‘active points’ for ther- 
mopower can be found and geometrically they coincide with the ‘hot points’; if K,(r)/ 
K2(r) -+ 1 there are no ‘active points’ for thermopower and we cannot speak about a 
superlattice for thermopower. 

5. Conclusions 

In this paperwe haveshownamethodforcalculatingtheeffectivevaluesoftwoeffective 
coefficients using their local values. A similar method can be used for all these kinetic 
coefficients, which can be introduced through a local value. The special featuresof those 
physical quantities near the percolation threshold are’the existence of the ‘special’ points, 
whose existence is due to irregular current flow through the sample. 

An infinite cluster consists of large finite clusters (referred to as class ‘2’). which 
almost do not change in the critical interval. All changes in phase transition happen at 
the ‘hot points’, which are situated at the same places below and above the threshold, 
because they are narrow bridges between large clusters. Atp < pc the‘hot points’consist 
of component ‘2’, and at p >pc of component ‘1’. Given a change of concentration in 
thecriticalinterval, thequantityof ‘hot points’and heat released byeachoneischanged. 
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